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Motivation

(a) Full spectrum =⇒
(b) Dirac cones
free/reshaped

E(~k) = vF |~k − ~kF |, where vF ∼ 1/300.
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Motivation

Gapless semiconductor energy zones.

Ultrarelativistic low-energy spectrum.

Low energy excitations — massless 4-component Dirac fermions =⇒
playground to study various quantum relativistic effects — ”CERN on ones
desk”: relativistic collapse at a supercritical charge, Klein tunnelling, etc.

(a) An artificial atomic nucleus
made up of five charged calcium
dimers is centered in an
atomic-collapse electron cloud.

(b) Klein tunnelling:
ultrarelativistic and nonrelativistic
cases.
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Motivation

It’s essential to study the renormalization (theory modification in presence of
interactions) since the graphene will soon have a number of applications. How it is
being done?

Experimentally through measurements of some properties e.g. quantum
capacitance, compressibility, etc.

(a) Quantum capacitance and Fermi velocity dependence on µ.

Numerically using the hybrid Monte-Carlo method.

Analytically (at least in the high ε limit).
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Motivation

How can we perform these analytical calculations? There are basically two graphene
models:

1 The effective graphene model : based on low-energy limit with linear spectrum,
continuous approximation (spacing a→ 0), loss of hexagonal geometry, energy
scale and uses conventional Coulomb interaction.

2 But the linear spectrum approximation sometimes leads to nasty divergences.

3 Moreover, the bare interaction deviates from the Coulomb law dramatically at
small distances (due to σ-electrons screening that were not accounted we
modify only 3 nearest potentials), this deviation plays the crucial role in
shifting the phase transition ε value to non-physical ε ∼ 0.7 and other
properties.

4 The Hubbard model (used widely for numerical simulations with
supercomputers), that preserves geometry, finite spacing, complete spectrum
and arbitrary easy-tunable interaction (Coulomb with 3 nearest potentials
changed).

Supercomputer simulations within the Hubbard model became a fruitful and
developing approach for getting non-perturbative results. This is why it is extremely
important to explore it analytically in order to check HMC simulations and explain
some observations.
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The Hubbard model

Hamiltonian

We start from a pretty-simple Hubbard Hamiltonian

Ĥ = −κ
∑

(x,y),σ

(
â†σ, xâσ, y + â†σ, yâσ, x

)
±m

∑
x

â†σ, xâσ, x︸ ︷︷ ︸
tight binding

+
1

2

∑
x,y

V (x, y)q̂xq̂y︸ ︷︷ ︸
interaction

,

1 tight-binding term — the neighbouring sites’ wave functions overlap, making
the exchange of electrons possible,

2 massive term, explicitly breaking the sublattice ”chiral” symmetry — used in
simulations (that’s why we have to keep it) to avoid zero eigenvalues,

3 the electrostatic instantaneous interaction (must be a Coulomb law screened at
small distances to accound σ-electrons).
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Ĥ = −κ
∑

(x,y),σ

(
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The Hubbard model

Partition function

After applying the Hubbard-Stratonovich transformation to decompose the
four-fermion interaction term, the partition function becomes:

Z =
∫
DϕDη̄DηDψ̄Dψe

−Sem(ϕ)−
∑
σ,x,y

η̄(x)Mx,y(ϕ)η(y)−
∑
σ,x,y

ψ̄(x)M̄x,y(ϕ)ψ(y)

,

where Ml1,l2,σ(x, y) is some (nasty-looking) fermion action matrix.
The main point is that in the analogue to QED three particles emerge: electron,
hole and scalar ”photon”, carrying the interaction.
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The renormalization results

Self-energy function

One-loop self-energy function Σ
(1)
e :

Σ
(1)
e = +

Σ
(1)
e (p) =

����������
1

2
δτ

(
V00 0
0 V00

)
eip

0δτ

︸ ︷︷ ︸
Σ1(p)

−

−
����������
1

2
δτ

(
V00 0
0 V00

)
eip

0δτ +
eip

0δτδτ

2LxLy

∑
~k

tanh

(
E(~k)

2T

)
×

− mc2

E(~k)
Ṽ AA(~p− ~k) ϕ(~k)

E(~k)
Ṽ AB(~p− ~k)

ϕ∗(~k)

E(~k)
Ṽ BA(~p− ~k) mc2

E(~k)
Ṽ BB(~p− ~k)


︸ ︷︷ ︸

Σ2(p)

.

This cancellation is typical for lattice calculations and preserves Σxx = 0, conserving
the charge. The structure of this correction preserves the propagator form, leading
to its parameters renormalization.
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Ṽ BA(~p− ~k) mc2

E(~k)
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.

This cancellation is typical for lattice calculations and preserves Σxx = 0, conserving
the charge. The structure of this correction preserves the propagator form, leading
to its parameters renormalization.
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The renormalization results

Spectrum function

Given the Σe formula, one can renormalize the energy spectrum ϕ(~k)

(E2
R(~k) = m2

R + ϕ2
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Figure : Energy spectrum profile: non-interacting, Coulomb and screened Coulomb cases. Very
sensitive to modifications of the potential at small distances!

In the limit a→ 0, ~k → ~kF the effective theory result is reproduced at the leading
logarithmic accuracy

vRF = vF
[
1 + 1

4
αg
[
log
(

Λ
2T

)
+ γ − log π/4 +O(Λ−1)

]]
,

But we have renormalized the whole spectrum!
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The renormalization results

Mass

Similarly to ϕ function, the information on mass mR can be extracted. The most
exciting thing is its dependence on the bare mass m.

m
R

m

m     T

fake extrapolation possible,
mass vanishes very slowly

Such behaviour has recently been observed numerically by our colleagues and other
lattice groups: they extrapolated mass and got non-zero result.
Now the analytical explanation obtained! One has to account this behaviour during
simulations in order to achieve massless limit (answer to the question ”How small the
bare mass should be to get almost massless limit?” is ”Smaller than expected. ”).
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The renormalization results

Interaction itself renormalized

The ”photon” self-energy function (polarisation operator) P(1)
γ (~k) is simply:

The expression for P can be compared with known results in the continuous
massless limit.
In absence of the temperature T = 0 we reproduce a well-known effective theory
result V (r)→ V (r)/(1 + παG/2), which stands for a strong vacuum polarisation.

In the presence of the temperature, the spectrum Ṽ (~k) modifies 1

|~k|
→ 1

|~k|+mD
by

the Debye mass — also well-known result.
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The renormalization results

Interaction itself renormalized

MC simulations 
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Figure : Potential renormalization in suspended graphene: effective model (dashed), HMC
(red triangles) and one-loop calculation (bullets, circles and stars).

It was found out that one-loop potential describes simulation results pretty-well
(massive comparison coming soon...), that is a question to answer.
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The renormalization results

The question

How could it turn out that HMC simulation results are described so well by
one-loop approximation even in suspended graphene εext = 1, when the interaction
is very strong?
There is an experimental evidence that the conductivity σ(ω) (the same diagram,
but easier to measure) does not feel higher order corrections — why?
There must be a symmetry or other explanation to this fact.
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Conclusion

Conclusions

The Hubbard graphene model is widely used for computer HMC simulations,
giving very precise non-perturbative results.

In order to check them, the perturbative approach was developed, it will work
for sure at least in ε� 1 limit.

The obtained analytic approach reproduces well-known effective field theory
results and, most importantly, gives a good approximation to numerical
simulations. Thus, it can be easily used to check any subsequent HMC results.

The sensitivity to the form of bare potential Vxy was shown, but to account it,
one has to use the Hubbard model.

Surprisingly, even when ε = 1 (meaning αG ∼ 2.2) one-loop interaction is very
close to HMC results, implying that higher-order correction are somehow
suppressed.

This suppression has been previously observed experimentally and is an open
question.

Thank you for your attention, for details please visit arXiv-1506.00026.
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